UPDF

WWW.UPDF.COM

Table of Contents

® 1 Table of Contents
® 2 Introduction
® 3 Setup your IDE
® 3.1 In pycharm
® 3.2 InVScode
® 4 Submitting Workflows
® 5 Simple Workflows
® 5.1 Minimal Workflow
® 5.2 Templates
® 6 Workflow Parameters and Variables
® 6.1 Static Parameters - Variables
® 6.2 Dynamic Parameters
® 6.3 Volumes and Dynamic Parameters
® 7 Loops, Conditionals and Parrallel execution
® 7.1 Loops and Conditionals
® 7.2 Parallel Executione
® 7.3 Dynamic Parallel Execution
® 8 Artifacts
¢ 8.1 Output Artifacts
® 8.2 Input Artifacts
® 9 CronWorkflow and WorkflowTemplate
® 10 Final words

Introduction

So, you want to build a Workflow, hu? You've come to the right place.

Workflows are Argo's equivelent to Airflow's DAG, or Hkube's pipelines. It is basically a flow chart for your algorithms.
You can check a load of examples (from the internet) in this link. And you can check out my own (working) examples in this link.

Set up your IDE

You can use the schema in this linkin order to set up your IDE so you'd have autocomplete for Argo's CRD's. It would help you build Workflow.

In pycharm

1. Download the schema.json .
2. In pycharm, go to: Settings | Languages & Frameworks | Schemas and DTDs | JSON Schema Mappings.
3. Define a map like this: press the plus, fill out a name and choose the schema file.

https://updf.com
https://updf.com

UPDF

WWW.URDPBreSoM 2 rightmost plus and choose a pattern for files that would have this autocomplete.

| Languages & Frameworks 0 Schemas and DTDs IS

+ =

Appearance & Behavior prespe—y -

Verson Coatrol
Project: wor lbows
B, E [e —

Languadges & Frameworks

5. In the example above, every file with the endfix "_workflow." would be considerd as a workflow and we'd have autocomplete and syntax
highlighting for it.
6. Hit ok.

In VScode

You need to do the same as in pycharm, but with the redhat-yaml extension. Click here to download it.

For a full guide - search on google "Argo set up your IDE" or something like "How to install json schemas for autocomplete vscode".

Submitting Workflows
® Argo APL:
Submit your workflow in a POST with json containing your workflow to
<argo-workflows-host>/api/v1/workflows/<namespace>
In the HTTP POST request, your json needs to look like {"workflow": <workflow as json>}.
Note: If you already built a workflow and you want to activate it through the API with different input, make sure of the following:
" Your whole workflow is a WorkflowTemplate, so that you can submit to the api a workflow with a single templateRef step.
The refrence should be to the entrypoint of your WorkflowTemplate.
= Your workflow takes it's initial input from the varible {{workflow.parameters}} .
" |n your submitted workflow (in the http), you have the inputs in the field spec.arguments.parameters
® Openshift API:
Use oc apply -f <workflow_name>.yaml.
Notice: if you use openshift APl you have to have a metadata.name field, metadata.generateName is not enough!
® Argo Ul:

In the Workflow tab, click on "SUBMIT NEW WORKFLOW" on the top left.

Simple Workflows

https://updf.com

UPDF

WWW.UPDF.COM

N

A Workflow is basically an k8s\openshift resource, so you define it like any other resource - YAML or JSON files.
We write in YAML because it has comments and is human friendly (YAML for humans, JSON for computers).
Make sure to know some YAML basics (bonus: k8s YAML's) before diving in to this guide.

The most basic Workflow we can write is this:

Basic workflow

api Ver si on: argoproj.io/vlal phal

ki nd: Weérkfl ow # new type of k8s spec
nmet adat a:
gener at eName: ny-wor Kkf | ow # aut o-generated name of the workflow spec
name: ny-wor kfl ow # regul ar nane
spec:
entrypoint: ny-tenplate # invoke the whal esay tenplate
tenpl at es:
- nane: ny-tenplate # name of the tenplate
cont ai ner:

image: <registr/argo/ al pi ne-python: 3. 11
comrand: [echo]
args: ["nadav four the w n"]

Explainations:

Lines 1-3: Regular k8s stuff. Notice that in kind you can write "Workflow", "WorkflowTemplate", "CronWorkflow" and more. These are different
types of Workflows, all of them are simillar.

Lines 4-5: Names to the workflow, you have to have at least one of them. metadata.generateName is preffered because Argo adds to it random
characters (for example my-workflow-n4tw. The last characters are totally random).

But if you use oc apply to a workflow it has to have metadata.name.

Line 6: spec.entrypoint is the first template to run in this Workflow. Templates are like tiny "functions" that tell argo what pod to run, when to run
it and how to run it. More on them later.

Lines 9-13: Defines the first (and only) template. It runs the container with the alpine-python image, with the command and args "echo nadav four
the win".

Under spec.templates[x].container can be written good ol' fashioned k8s container. x is a number because spec.templates is an array.

Great! You can submit the Workflow through the submit section.

Now, what if you wanted to run two pods one after the other? Or maybe you even want to run two pods on the same time! Or even - god forbid - run three
pods, one at the begining and two afterwards, simultameously?! D:
Fear not, Argo will help you fufill even your most notorious pod desiers.

Templates

As said above, templates are like tiny "functions" that are the building blocks of Workflows. They have multiple types:

Container, as we've seen.

Steps, dictates the order for other templates.

DAG, simillar to steps.

Script, allows you to run a script (python, node, bash...) on an image. Useful.
ContainerSet, for multipule containers on a pod.

HTTP, for http requests.

We don't need all of them. We will focus on Container, Script, and Steps.

So let's say we want to run two pods one after the other. We only have one entrypoint, so we can't make it run the container template (my-template) that
we wrote. That will run that template only.
To prevent that, we will use the steps template (simillar to dag), like so:

Muilti-stepped workflow

api Version: argoproj.io/vlal phal

ki nd:

Wor kf 1 ow

net adat a:
gener at eName: st eps-

spec:

https://updf.com

UPDF

WWW.UPDF.COM itepS

This spec contains three tenplates: ny-steps, ny-tenplate, ny-tenplate-2
tenpl at es:
- nanme: ny-steps

Instead of just running a container

This tenplate has a sequence of steps

st eps:

- - nane: step-1 # step-1 is run before the follow ng steps

tenplate: ny-tenplate

- - nane: step-2a # doubl e dash => run after previous step
tenplate: ny-tenplate

- nane: step-2b # single dash => run in parallel with previous step
tenplate: ny-tenplate-2

This is the same tenplate as fromthe previ ous exanple
- nanme: ny-tenplate
cont ai ner:
i mage: <registry>/argo/al pi ne-python: 3. 11
comand: [echo]
args: ["nadav for the win"]

- nane: ny-tenplate-2
cont ai ner:
i mage: <registry>/argo/al pi ne-python: 3. 11
command: [echo]
args: ["epstein didn't kill hinmself"]

Explainations:

® Lines 14-22: Steps is an array of arrays. It runs each second array simultameously.
So if, for example, we get: steps=[[a], [b,c,d], [e,f]], we know that the pod a would run, then b,c,d together, and then e,f together.
Each array is marked by a dash "-", so this array is actually [['step-1"], ['step-2a", "step-2b"]].

® Lines 26-36: We define two simple templates here that run according to the description in steps.

After submitting this example, we get:

On the Ul:
steps-|Td56
shap-1
stap-2b step-2a
With the CLL:

After running "oc rsh <Argo-server pod name> argo get <workflow name>":

https://updf.com

UPDF

WWW.UPDF.COM

argo-workflow-argo-workflows-server-675df677dd-n5T1gx argo get steps-17d56
ame s steps-17d56

Namespace: TR

ServiceAccount: unset (will run with the default ServiceAccount)

Succeeded

PodRunning False

Completed True
Tue Feb 22 12:01:58 +0000 (1 minute ago)
Tue Feb 22 12:01:58 +0000 (1 minute ago)

Tue Feb 22 12:02:18 +0000 (1 minute ago)
20 seconds
3/3

ResourcesDuration: 9s* (1 cpu),9s* (LOOMT memory)

STEP TEMPLATE PODNAME DURATION MESSAGE
steps-17d56 my-steps
step-1 my-template steps-17d56-13144749 9s
step-2a my-template steps-17d56-1923859118 6s
step-2b my-template-2 steps-17d56-1907081499 G5s

Workflow Parameters and Variables

Static Parameters - Variables

In the previous section we learned how to structure a basic Workflow.

Notice that we have repetitive code over there (or repetitive YAML if you'd like) in lines 26-36. We wanted to echo two good and honest-to-god truthful
statments, so we wrote a template for each of them.

But it's the same template, just with a different truthfull statement. So instead, we could write just one template, and insert the statments (the strings) as
variables.

In order to do that, we'd write "{{ variable }}" or "{{ =expression }}" in the YAML. Then Argo would automatically replace these variables with the correct
input.

® Argo's variable substitution

Argo replaces the variables and expression during execution. So when a pod comes up with a variable, you can see in the YAML defenition of
the pod the replaced variable.
That means that your variable values or inputs are written in the YAML file of the pods. Notice that in terms of security.

Also, it limits the length of the variables. The variables are strings that can't pass the few kb size.

Let's see how we can repeat the previous example with variables:

Muilti-stepped workflow

api Versi on: argoproj.io/vlal phal
ki nd: Workfl ow
net adat a:

gener at eNane: st eps-

spec:
entrypoi nt: ny-steps

This spec contains three tenplates: ny-steps, ny-tenplate
tenpl at es:
- name: ny-steps
st eps:
- - nane: step-1 # step-1 is run before the follow ng steps
tenplate: ny-tenplate
ar gunment s:
par anet ers:
- nane: nessage
val ue: "nadav for the wn"

- - nane: step-2a # doubl e dash => run after previous step
tenplate: ny-tenplate

https://updf.com

UPDF

WWW.UPDF.COM

—Ppairaiievers:

- nane: nessage
val ue: "nadav for the wn"

- nane: step-2b # single dash => run in parallel with previous step
tenplate: ny-tenplate # changed ny-tenplate-2 to ny-tenplate
argument s:

paraneters:
- nane: nessage
value: "epstein didn't kill hinself"

- nanme: ny-tenplate
i nputs:

par anet ers:
- nane: nessage

cont ai ner:

i mage: <registry>/argo/al pi ne-python: 3. 11

comand: [echo]

args: ["{{inputs.paraneters. message}}"]

Explainations:

Lines 15-18: We define the step as before, but now we add arguments.

There are two types of arguments: parameters and artifacts, | would explain artifacts in another time.

Under parameters, we write a list of the parameters we want to pass to the template (like i've said, it's a mini function). We define a parameter
with a {"name": <name>, "value": "value"} syntax.

® Lines 29-39: Another parameter, just this time it has a different value.
® Lines 36-48: If we want to use variables in our template, we have to define them!

Here we define inputs.parameters, simillarly as we did in the first bullet. Notice that if we provide value here as well, it would be the defualt value
of the variable.

Line 42: This is how we use parameters in the workflow!

In the YAML of the pod, it would look like this: {"command":["echo"],"args":["nadav for the win"[}.

Saved variables

Some variables are predefined by argo, they can be very helpful. For example:
® {{workflow.name}}
* {{pod.name}}
® {{workflow.creationTimestamp}}

For the full list search "Argo workflows variables" on google.

Dynamic Parameters

Dynamic parameters are parameters that are outputs from other pods that we want to forward. Their value is determined during runtime.
We would use them simillarly to the static parameters.

But first,

we need to discuss how Argo reads outputs.

Each pod can have two types of outputs - artifacts and parameters. Artifacts are files that are saved and shared through an "Artifact repository" (usally s3-
storage). But we will focus on parameters.

Argo knows to read the stdout of the pods and store that as variables. The stdout of a container is usally its logs, but argo utilizes them to pass parameters

between pods.
So if, for example, your container counts my daily coffee intake in cups, and then prints their results in a json format: {"result": 99}, Argo can read that

"log" and you can load it as a variable.

Let's see an example:

Simple stdout params output

api Versi on: argoproj.io/vlal phal

ki nd:

Wor kf | ow

met adat a:
gener at eName: exanpl e- par ans-

spec:

entrypoint: steps
tenpl at es:

https://updf.com

UPDF

WWW.UPDF.COM
sTepsT™™
- - nane: generate
tenpl ate: gen-randomi nt-pyt hon

- - nane: print
tenpl ate: print-parans
argument s:
par anet er s:
- nanme: res
value: "{{steps.generate.outputs.result}}"

- nane: gen-randomint-python
script:
i mage: "<registry>/argo/al pi ne-python: 3. 11"
command: [pyt hon]

source: |
i mport random
i = random randi nt (420, 6969)
print(i)

- nane: print-parans

i nputs:
par anet ers:
- nanme: res
script:

image: "<registry>/argo/al pi ne-python: 3. 11"
command: [pyt hon]
source: |
res = {{inputs.paraneters.res}}
print(type(res), res*5)

Explainations:

® Lines 18: Now instead of writing a value, we use a parameter that will be set when the generate step will finish.
This value says to Argo to take whatever generate had printed to its stdout (oc logs), and save it as the variable res.
In this example it's a simple number, but we could also print a JSON file and transfer it.
® Lines 22-28: Here we use a script template.
This template is simillar to container, but instead of running command with args, Argo creates a file with the string that is written in script.source,
and runs that file.
In this example we used the script template to execute python code that prints a random int in a legitimate and common range of numbers.
® Lines 39-40: In this python script we load the parameter.
The parameter is written in the script exactly as it is read from the stdout of the previous pod. Take a look at the following notice:

1 Argo's parameter parsing

If line 28's printed 50 then in line 39 it would be written res = 50 (picture it written in the YAML). And if line 28 printed hello then line 39
would be res = hello, which will raise a python error because hello is undefined.

To fix the following example, we need to make sure that line 28 printed "hello" with quotations, so that line 39 would be res =
"hello", which is valid python.

Volumes and Dynamic Parameters

Let's say you're a good programmer (it's not a compliment, it's an assumption). And let's say that, being the good programmer that you are, your code
prints pretty JSON logs to stdout.

So when you use oc logs <pod-name> or look at your pod in OpenShift Ul, you want to see your logs. Maybe you even defined that your logs are sent
directly from stdout to Splunk or Elastic (using annotations in OpenShift, see here).

But wait, you also want to use Argo and transfer parameters between pods in your Workflow! You can't have Argo read a parameter from stdout, it has all
of your logs!

Fear not, youngling, for | shall teach you the ways of Argo.

We want to configure Argo so that it does'nt read your stdout and takes the parameters from there. Instead, it would be best if Argo just read a file with
your output, preferably a JSON file.

https://updf.com

UPDF

W wah - PRIBsEvE QIM utput in /some/path/output.json . Now you need to tell Argo to read the parameter from this file.
uCwarTTgeTRTTSTIeTTave access to your container, it only has access to its sidecar container (deafultly named wait, it's the argo-exec image).
So you need to define a volume for your pod, so that Argo's sidecar container could access your output.json file in that volume and read its contents.

Let's see look at a slightly more complex example:

Volumes and Parameters

api Version: argoproj.io/vlal phal
ki nd: Werkfl ow

net adat a:
gener at eName: vol une- out put s- exanpl e-
name: vol une- out put s- exanpl e

spec:
podMet adat a:
annot ati ons:
coll ectord.io/index: ny_splunk_i ndex

entrypoi nt: worKkfl ow steps
tenpl at es:

H# steps tenplate
- nane: workfl ow st eps
st eps:

- - nane: generator
tenpl ate: generator
argunents:

paraneters:
- pane: mn
val ue: "420"
- nane: nmex
val ue: "6969"

- - nane: print-nessege
tenpl ate: print-nessege
argunents:
paraneters:
- nane: nunberl
val ue: "{{steps.generator.outputs. paraneters. nunber1}}"
- nane: nunber?2
val ue: "{{steps.generator.outputs. paraneters. nunber2}}"

HHHHHE R first tenpl ate
- name: generator

inputs:
par anet ers:
- name: mn
- name: max
out put s:

par aneters:
- nanme: nunberl
val ueFrom
path: /mmt/ nmy_vol une/ nunber 1. t xt
- nanme: nunber?2
val ueFrom
path: /mt/ nmy_vol une/ nunber 2. t xt

vol unes:
- nane: ny-vol une
emptyDir: {}
script:

i mge: "<registry>/argo/ al pi ne-python: 3. 11"
comand: [pyt hon]
i mgePul | Policy: Al ways

https://updf.com

UPDF

WWW.UPDF.COM

—=OTUnEWOUNt S

- nanme: ny-vol ume
mount Pat h: / mt/ my_vol une

source: |
fromrandom inport randrange

range_mn = {{ inputs.paraneters.nmn }}
range_nmax = {{ inputs.paraneters.nmax }}
random nunber1 = randrange(range_nin, range_nax)
random nunber2 = randrange(range_nin, range_nax)

with open("/mt/ny_vol une/ nunber1.txt", "w') as f:
print(random nunberl, file=f)
with open("/mt/ny_vol une/ nunber2.txt", "w') as f:

print(random nunber2, file=f)

print(f"Done! nuns are {random nunber1}, {random nunber2}")

- nane: print-messege

H second tenpl at e HHHHHHHEHHHIHHIHHIEHH

inputs:
par aneters:
- nane: nunberl
- nanme: nunber?2
cont ai ner:
i mge: "<registry>/argo/ al pi ne-python: 3. 11"
comand: [sh, -c]
args: ["echo results are: {{inputs.paraneters.nunber1}}, {{inputs.paraneters.nunber2}}"]

Explainations:

Lines 8-11: Metadata that will be written in the pods YAML. So this annotation will be added to the pod (the annotation sends logs from stdout to m
y_splunk_index)

Lines 31-34: This is how we pass defined outputs.

It's the same as before with the dynamic parameters, but now we want a specific output and not just outputs.result (which is stdout of the
container).

These outputs are defined in lines 44-51.

Lines 44-51: Here we define the template's outputs. Notice that once again we can define parameters and artifacts, but we choose parameters.
The names are matched to the names of the parameters above. The values are read from the files in the /mnt/my_volume/ folder.

As before, the parameters will hold exactly what is written as a string in the files number1.txt, number2.txt.

Lines 53-58: This is the templates volume defenition. Notice that in mountPath you choose the path of the folder that you want to share
between the sidecar containers.

Lines 73-76: In this python script, we save the results of our computation inside the volume, in the files /mnt/my_volume/number<x>.txt.

Loops, Conditionals and Parrallel execution

You've learned the basics! You can almost call yourself a Junior Workflower (pls don't call yourself that).
Now it's time to move on to the fun stuff, and utilize the power of Argo-Workflows.

Loops and Conditionals

Templates are like mini-functions, so a Workflow is kind of a programming language.

Let's look at a neat example.

In the following Workflow, a coin is flipped. If it turns out heads - we won! If it turns out tails we lose.
Because we're petty, if the coin turns tails, we'll flip it again until we win (until it turns heads).

Let's see how to run a workflow in which we never lose:

Coin-Flip, loops and conditionals

api Version: argoproj.io/vlal phal

ki nd:

Wor kf | ow

net adat a:
name: coinflip-recursive
gener at eName: coi nflip-recursive-

https://updf.com

UPDF

WWW.UPDF.COM

ChNtTypor . steps- coinfli P
tenpl ates:
HHHHHHHHH] St eps tenpl at e ####HHH T HHH T
- nane: steps-coinflip
steps:
- - nane: flip-coin
tenplate: flip-coin
- - nane: heads
tenpl ate: heads
when: ' {{steps.flip-coin.outputs.result}} == heads'
- nane: tails
tenplate: steps-coinflip
when: ' {{steps.flip-coin. outputs.result}} == tails’

second tenpl ate

- nane: flip-coin
script:
name:
i mge: '<registry>/argo/ al pi ne-python: 3. 11"
conmand:
- python
source: |
inmport random
result = "heads" if randomrandint(0,1) == 0 else "tails"
print(result)
- nane: heads
cont ai ner:
name: "'
i mage: ' <registry>/argo/al pi ne-python: 3. 11’
command:
- sh
- '-c'
ar gs:
- echo "it was heads"

Explainations:

® Lines 16: This is a conditional. This step will run only if this condition evulates to 'true'. For the full syntax of conditionals, search in google.

® Lines 18-19: If the conditional in line 17 will evulate to 'true’, the steps-coinflip template will run.
But wait! We're inside the steps-coinflip template! Argo will run this whole steps template once again - so the next pod that will run would be the flip

-coin.
Argo calls this Recursion, although | prefer to call it a loop. That is because it reminds more of a standard programming loop.

After submitting this example, we get:

On the UL

With the CLI:

https://updf.com

UPDF

W Waltte RiRring DY jo-server pod name> argo get <workflow name>":

Namespace: p Cum-np
ceAccount: 11 run with the default ServiceAccount)

PODNAME DURATION ME GE

coinflip-recurs --245495126
when 'tails == hea luated

coinflip-recur
when 'tails luated false

when 'heads == tails’ luated false

securely by setting it.

Parallel Executione

Let's say you want to run a simillar template, but for different inputs or different base image.
Take a look at the next example:

Parallelism

api Versi on: argoproj.io/vlal phal
ki nd: Workfl ow

met adat a:
gener at eNane: | oops- par am ar g-
spec:
entrypoint: | oop-param arg-exanpl e
argunent s:
par aneters:
- nane: os-list # alist of itens
val ue: |
[
{ "inmage": "argo/ al pi ne-python", "tag": "3.11" },
{ "inmage": "argo/ bullseye-python", "tag": "3.11" },
{ "image": "jellyfish/rhel-python-3.6", "tag": "latest" }
]
tenpl at es:

HHHBHHHHIHHH R St eps t enpl at e #HHHHHHHHHIHH I

- nane: | oop-param arg-exanpl e
i nputs:
par aneters:
- nane: os-1list
st eps:
- - nane: test-linux
tenpl ate: cat-os-rel ease
argument s:
par anet er s:
- nanme: inage
value: "{{iteminmage}}"

- nane: tag
value: "{{itemtag}}"
wi thParam "{{inputs.paraneters.os-list}}" # paranmeter specifies the list to iterate over

HEHHHH R 1 1St t enpl at © H#H#HHAHHHHHHIHIHHH
- nane: cat-os-rel ease
i nputs:
par aneters:
- nane: inage

https://updf.com

UPDF

WWW.UPDF.COM
ot arer .
image: "<registry>/{{inputs.paraneters.image}}:{{inputs.parameters.tag}}"
comand: [cat]
args: [/etc/os-rel ease]

Explainations:
® Lines 7-15: This is the way to enter paramters for the whole Workflow. At any place in the Workflow you can access these variables.

® Lines 29-33: The withParams key tells Argo to run this template once for every item in the input list (in parallel).
The input is then called item, so in the first run: item.image=argo/alpine-python.

@

And the output:

loops-param-
arg-zdhur
test-linuz2.. test-linu1.. test-linuzdl..
§,1ag:lstest) hon,tag:3.11) hon,tag:3.11)

Dynamic Parallel Execution

As of now, you're probably a clever Workflower. Or a determined reader. Or you just jumped to this part because your boss told you to do something and
you have no idea how, so you're searching desperately for an answer to copy so you could do your job and remain ignorant.

Anyway, you need to come up with a way to process your outputs in parallel, and than combine all of the outputs togehter in a single pod.

Fear not, | will show you the way:

Dynamic Fan-in

api Versi on: argoproj.io/vlal phal
ki nd: Workfl ow

net adat a:

gener at eNane: dynami c- parans-fan-in
spec:

entrypoint: steps

tenpl at es:

it steps tenpl at e #AHHHHTHIHHIHHIRH I
- nane: steps
st eps:
- - nane: generate
tenpl ate: gen-nunber-1list

Iterate over the list of nunmbers generated by the generate step above
- - nane: double
tenpl ate: doubl e
argunent s:
par anet er s:
- name: num
value: "{{iten}}"
wi thParam "{{steps.generate.outputs.result}}"

Conbine all of the last results (nunr2)
- - nane: sum
tenplate: sum
argunent s:
par anet ers:
- nane: doubl ed- nunbers

https://updf.com

UPDF

WL OPDE.-CO L "{{steps. doubl e. out puts. paraneters}}"

H# Tirst tenpl at e HHHHHHHHHHHHHHHHHHHHHHHHHRRIIHE
Cenerate a list of nunbers in JSON format
- nanme: gen-nunber-1li st
script:
image: <registry>/argo/al pi ne-python: 3. 11
comrand: [python]
source: |
import json
i nport sys
i mport random

num of _pods = random randi nt (3, 10)
j son. dunp([random randint(1,10) for i in range(numof _pods)], sys.stdout)

H## second tenpl at e #######H#?

- nane: double
i nputs:
paraneters:
- nane: num
out put s:
paraneters:
- nane: doubl e- num
val ueFrom
path: /mt/ny_vol unme/result.txt

vol unes:
- nanme: ny-vol ume
emptyDir: {}
cont ai ner:

vol unmeMount s:
- nane: ny-vol une
mount Pat h: / mt/ my_vol ume

image: <registry>/argo/ al pi ne-python: 3. 11
comrand: [sh, -c]
args: ["echo $(({{inputs.paraneters.nun}}*2)) >> /mt/ny_volume/result.txt"]

third terrpl at e #AHH#HHBHAHAHHHHBHAHHHHBHAH BRI

- nane: sum
i nputs:
paraneters:
- nane: doubl ed- nunbers
script:
image: <registry>/argo/al pi ne-python: 3. 11
comrand: [python]
source: |
results = {{ inputs. paraneters. doubl ed-nunbers }}
print(results, type(results))
print(f"The sumis: {sun([int(obj['double-num]) for obj in results])}")

Explainations:
® Lines 20-21: Notice that now the list that the template iterates on is created dynamically.

The amount of double pods that will run is determined by the length of the generated list in the python script, at line 42.
® Lines 28-28: The paramater steps.<step-name>.outputs.parameters returns all of the parameters of <step-name> as a list of objects (dictionaries).

Example run:

The whole Workflow looks like this in the Ul:

https://updf.com

UPDF

WWW.UPDF.COM
—

dynamic-params-
fan-inBx2k2

)

penerate

double{§:3) double(5:8) double{4:10) double{3:1) doublei2:7} double(1:3} double(0:1}

v

sum

The output of the first pod (generate) is:
[1,6,7,1,10,9, 6]

Notice that the sum of this array is 40.
The output of the last pod is (sum) is:

[{'double-num': '2'}, {'double-num': '12'}, {'double-num': '14"}, {"double-num’: '2'}, {"double-num': '20'}, {'double-num": '18', {'double-num': '12'}] <class 'list>
The sum is: 80

Artifacts

Artifacts are simply whole files that you want to save and load with your Artifact repository. In our case it's S3-storage. Use Artifacts if you want to transfer
large files between your Workflow pods.

The Artifact repository should be configured beforehand during the installation of Argo. In our case, it means setting our S3 credentials in the Argo values.
yaml.

In this section, | will assume your Artifact repository is already set up, so you can easily save your files to S3.

Output Artifacts

If your code deals with a lot of data, you might want to transfer big files between pods. Parameters are passed in the k8s YAML to a pod, so it restircts
their size in the KB zone.

In order to move around MB's and GB's, you have to save your files to S3 using Artifacts, then load them in the next step.
Let's look at an example:

Artifact outputs

api Versi on: argoproj.io/vlal phal
ki nd: Workfl ow
net adat a:
gener ateNane: artifacts-exanple-
nane: artifacts-exanple
spec:
entrypoint: steps

tenpl at es:
- nane: steps
st eps:
- - nane: gen-artifact
tenplate: gen-artifact

- nane: gen-artifact

vol unes:
- nanme: ny-vol ume
emptyDir: {}
out put s:

artifacts:

https://updf.com

UPDF

WWW.UPDF.COM g-inportent-file
—acTT T mmt / my _vol une/ out put . t xt
ar chi ve:
none: { }
s3:

key: "testing/{{workflow nane}}/big-inmportent-file.txt"

script:
image: "<registry>/argo/al pi ne-pyt hon: 3. 11"
vol umeMount s:
- nane: ny-vol une
nmount Pat h: / mt/ my_vol unme
command: [python3]
source: |
l'ines = 500000
sentence = "bl ah bl ah\n"
with open("/mt/ny_volune/output.txt”, "w') as f:
for i in range(lines):
f.wite(sentence)

Explainations:

Lines 18-19: We have to have a volume to use Artifacts.

Lines 23-24: The name of the artifact and the path of the file you want to save on s3.

Lines 25-26: Argo automatically compresses the Artifacts (tar.gz). | add these lines in order to prevent the compression.

Lines 27-28: The path (key) in S3 to save the file. It's under the default folder defined beforehand in Argos values.yaml.

| defined the default folder as argo-workflows-np, so the full key here is actually: argo-workflows-np/testing/{{workflow.name}}/big-importent-file.txt

And in S3:

Under argo-workflows-np/testing/*

$€ Delete bucket =5 Refresh Path: [/ f (=T @
“ | | File Size Type Last Modified Storage C
=
[artifacts-example-768gm/
Ijlanlfacts-examp\e-BMErj
[T artifacts-example-cp4lb/
[T artifacts-example-s4gfx/

: argo-workflows-np

Under testing/artifacts-example-8642r/*

b New bucket 3§ Delete bucket =2 Refresh Path: [testing/ | artifacts-example-8642r/ SO0 T A

~ | | File Size Type LastModified Storage C
2o s I [
=] big-importent-file.txt 4.77MB Text Document 2/28/20229:2928 AM STANDAF

Input Artifacts

Writing the input is as easy as writing the output, so before | show the full example, let's add a little cool trick:

Let's say you want to create a file on your container in a specefic path. Maybe you want to run a script, but have the script run inside a specific folder
(useful for python\nodejs imports).

In order to do that, we can create a file with Artifacts and run it with command of the container:

Input Artifacts

api Version: argoproj.io/vlal phal
ki nd: Workfl ow
net adat a:
gener ateNane: artifacts-exanpl e-
name: artifacts-exanple
spec:
entrypoint: steps

tenpl at es:
HHHH Y St eps tenpl at e ###HHHHIHH I

http://workflow.name
https://updf.com

UPDF

WWW.UPDF.COM
sTepsT™™
- - nane: gen-artifact
tenplate: gen-artifact

- - nane: print-artifact
tenplate: print-artifact
argunents:
artifacts:
- nane: results
from "{{steps.gen-artifact.outputs.artifacts.big-inportant-file}}"

HEHHHIH A TSt t enpl at e #iH#HHHHIHIH I
- nane: gen-artifact

vol unes:
- nanme: ny-vol ume
emptyDir: {}
out put s:
artifacts:

- nane: big-inportant-file
path: /mmt/my_vol une/ out put . t xt
ar chi ve:
none: { }
s3:
key: "testing/{{workflow nane}}/big-inportant-file.txt"

script:
i mage: "<registry>/argo/al pi ne-python: 3. 11"
vol umeMount s:
- nane: ny-vol une
nmount Pat h: / mt/ my_vol unme
command: [python3]
source: |
I'ines = 500000
sentence = "bl ah bl ah\n"
with open("/mt/ny_vol une/output.txt”, "w') as f:
for i in range(lines):
f.wite(sentence)
print("Done")

HHH B Y second tenpl at e #H#HHIHHHEH I
- nane: print-artifact
i nputs:
artifacts:
- nane: results
path: /hone/ pyt hon_app/results.txt

- nane: start-script
path: /hone/ pyt hon_app/start_script. py
raw
data: |
with open("./results.txt", "r") as f:
print(f.read())
print("Done")

cont ai ner:
image: "<registry>/argo/al pi ne-python: 3. 11"
i mgePul | Policy: A ways
command: [pyt hon]
args: ["/home/ python_app/start_script.py"]

Explainations:

® Lines 19-21: Passing an Artifact. Notice the from field instead of value.

® Lines 55-57: Injecting the Artifact that was provided to file /home/python_app/results.txt.
Notice - we could provide the Artifact in another way. We could use write S3 here under path and load an Artifact straight from S3, the syntax is
identical to the output S3 syntax.
In this case we don't need to pass the Artifact in Steps.

® Lines 59-65: In this way, we insert the text under raw.data into the file /home/python_app/start_script.py. We created a python script next to the re
sults.txt file!

https://updf.com

UPDF

WA ORI DT EORN iice that we don't use script template here. We use container and run the file we created in inputs.artifacts[1].

CronWorkflow and WorkflowTemplate

There are different kinds of Workflows. They are very simillar to a regular Workflow, so you don't have much to learn if you already a master Workflower.
CronWorkflow

The easiest one is CronWorkflow - It's a Workflow that runs according to a Cron.

In the YAML, change kind's value to CronWorkflow.

Basically copy-paste your Workflow into the spec.workflowSpec value (without metadata). Write your Cron in the spec.schedule key, and make sure to
define the concurrencyPolicy.

WorkflowTemplate

Let's say you had written a template and you want to use it in multiple different Workflows.
Instead of copy-pasting it, you can (and should) define it as a WorkflowTemplate and import it to other Workflows!

In the YAML, change kind's value to WorkflowTemplate and make sure you have metadata.name.
If you want to import a template from this Workflow, just use templateRef instead of template in steps.

Example:

Simple templateRef

api Ver si on: argoproj.io/vlal phal
ki nd: Workfl ow

net adat a:
gener at eNane: sinpl e-tenpl ateref-
name: sinpl e-tenpl at er ef

spec:
entrypoint: main
tenpl at es:
- nane: main
st eps:
- - nane: call-random nunbers-gener at or
tenpl at eRef :
nane: random nunber s-gener at or
tenpl ate: generator
argunents:
paraneters:
- name: mn
val ue: "10"
- nane: max
val ue: "100"
Explainations:

® Lines 14-16: This is how we refrence another template.
This step will use the template named generator form the WorkflowTemplate named random-numbers-genertor.
It will run the geneator template with the provided arguments and parameters.

Final words
That's it, | hope you enjoyed and now you'll be writing kickass workflows!
Feel free to add questions here with comments and | would do my best to answer and add corrections.

Written by:

http://metadata.name
https://updf.com

S 72=NI9 2T

https://updf.com

	Workflow writing basics

