
1.
2.
3.

Workflow writing basics

Table of Contents

1 Table of Contents
2 Introduction
3 Set up your IDE

3.1 In pycharm
3.2 In VScode

4 Submitting Workflows
5 Simple Workflows

5.1 Minimal Workflow
5.2 Templates

6 Workflow Parameters and Variables
6.1 Static Parameters - Variables
6.2 Dynamic Parameters
6.3 Volumes and Dynamic Parameters

7 Loops, Conditionals and Parrallel execution
7.1 Loops and Conditionals
7.2 Parallel Executione
7.3 Dynamic Parallel Execution

8 Artifacts
8.1 Output Artifacts
8.2 Input Artifacts

9 CronWorkflow and WorkflowTemplate
10 Final words

Introduction

So, you want to build a Workflow, hu? You've come to the right place.

Workflows are Argo's equivelent to Airflow's DAG, or Hkube's pipelines. It is basically a flow chart for your algorithms.
You can check a load of examples (from the internet) . And you can check out my own (working) examples .in this link in this link

Set up your IDE

You can use the schema in this linkin order to set up your IDE so you'd have autocomplete for Argo's CRD's. It would help you build Workflow.

In pycharm

Download the .schema.json
In pycharm, go to: .Settings | Languages & Frameworks | Schemas and DTDs | JSON Schema Mappings
Define a map like this: press the plus, fill out a name and choose the schema file.

https://updf.com
https://updf.com

4.

5.

6.

Press on the little rightmost plus and choose a pattern for files that would have this autocomplete.

In the example above, every file with the endfix "_workflow." would be considerd as a workflow and we'd have autocomplete and syntax
highlighting for it.
Hit ok.

In VScode

You need to do the same as in pycharm, but with the redhat-yaml extension. .Click here to download it

For a full guide - search on google "Argo set up your IDE" or something like "How to install json schemas for autocomplete vscode".

Submitting Workflows

Argo API:

Submit your workflow in a POST with json containing your workflow to

<argo-workflows-host> <namespace>/api/v1/workflows/

In the HTTP POST request, your json needs to look like {"workflow": <workflow as json>}.

Note: If you and you want to activate it through the API with different input, make sure of the following:already built a workflow

Your whole workflow is a , so that you can submit to the api a workflow with a single step.WorkflowTemplate templateRef
The refrence should be to the entrypoint of your .WorkflowTemplate
Your workflow takes it's initial input from the varible .{{workflow.parameters}}
In your submitted workflow (in the http), you have the inputs in the field spec.arguments.parameters

Openshift API:

Use oc apply -f <workflow_name>.yaml.

Notice: if you use openshift API you have to have a field, is not enough!metadata.name metadata.generateName

Argo UI:

In the Workflow tab, click on "SUBMIT NEW WORKFLOW" on the top left.

Simple Workflows

https://updf.com

Minimal Workflow

A Workflow is basically an k8s\openshift resource, so you define it like any other resource - YAML or JSON files.
We write in YAML because it has comments and is human friendly (YAML for humans, JSON for computers).
Make sure to know some YAML basics (bonus: k8s YAML's) before diving in to this guide.

The most basic Workflow we can write is this:

Basic workflow

apiVersion: argoproj.io/v1alpha1
kind: Workflow # new type of k8s spec
metadata:
 generateName: my-workflow- # auto-generated name of the workflow spec
 name: my-workflow # regular name
spec:
 entrypoint: my-template # invoke the whalesay template
 templates:
 - name: my-template # name of the template
 container:
 image: <registr/argo/alpine-python:3.11
 command: [echo]
 args: ["nadav four the win"]

Explainations:

Lines 1-3: Regular k8s stuff. Notice that in you can write "Workflow", "WorkflowTemplate", "CronWorkflow" and more. These are kind different
, all of them are simillar.types of Workflows

Lines 4-5: Names to the workflow, you . . is preffered because Argo adds to it random have to have at least one of them metadata generateName
characters (for example The last characters are totally random). my-workflow-n4tw.
But if you use to a workflow it has to have oc apply metadata.name.
Line 6: is the first to run in this Workflow. are like tiny "functions" that tell argo what pod to run, when to run spec.entrypoint template Templates
it and how to run it. More on them later.
Lines 9-13: Defines the first (and only) template. It runs the container with the image, with the command and args alpine-python "echo nadav four
the win".
Under can be written good ol' fashioned k8s container. is a number because .spec.templates[x].container x spec.templates is an array

Great! You can submit the Workflow through the submit section.

Now, what if you wanted to run two pods one after the other? Or maybe you even want to run two pods on the same time! Or even - god forbid - run three
pods, one at the begining and two afterwards, simultameously?! D:
Fear not, Argo will help you fufill even your most notorious pod desiers.

Templates

As said above, templates are like tiny "functions" that are the building blocks of Workflows. They have multiple types:

Container, as we've seen.
Steps, dictates the order for other templates.
DAG, simillar to steps.
Script, allows you to run a script (python, node, bash...) on an image. Useful.
ContainerSet, for multipule containers on a pod.
HTTP, for http requests.

We don't need all of them. We will focus on and Container, Script, Steps.

So let's say we want to run two pods one after the other. We only have so we can't make it run the template (my-template) that one entrypoint, container
we wrote. That will run that template only.
To prevent that, we will use the template (simillar to), like so:steps dag

Muilti-stepped workflow

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: steps-

spec:

https://updf.com

 entrypoint: my-steps

 # This spec contains three templates: my-steps, my-template, my-template-2
 templates:
 - name: my-steps
 # Instead of just running a container
 # This template has a sequence of steps
 steps:
 - - name: step-1 # step-1 is run before the following steps
 template: my-template

 - - name: step-2a # double dash => run after previous step
 template: my-template

 - name: step-2b # single dash => run in parallel with previous step
 template: my-template-2

 # This is the same template as from the previous example
 - name: my-template
 container:
 image: <registry>/argo/alpine-python:3.11
command: [echo]
 args: ["nadav for the win"]

 - name: my-template-2
 container:
 image: <registry>/argo/alpine-python:3.11
command: [echo]
 args: ["epstein didn't kill himself"]

Explainations:

Lines 14-22: It runs each second array simultameously.Steps is an array of arrays.
So if, for example, we get: , we know that the pod would run, then together, and then together.steps=[[a], [b,c,d], [e,f]] a b,c,d e,f
Each array is marked by a dash "-", so this array is actually [["step-1"], ["step-2a", "step-2b"]].
Lines 26-36: We define two simple templates here that run according to the description in .steps

After submitting this example, we get:

On the UI:

With the CLI:

After running " :oc rsh <Argo-server pod name> argo get <workflow name>"

https://updf.com

Workflow Parameters and Variables

Static Parameters - Variables

In the previous section we learned how to structure a basic Workflow.
Notice that we have repetitive code over there (or repetitive YAML if you'd like) in lines 26-36. We wanted to echo two good and honest-to-god truthful
statments, so we wrote a template for each of them.
But it's the same template, just with a different truthfull statement. So instead, we could write just one template, and insert the statments (the strings) as
variables.

In order to do that, we'd write or in the YAML. Then Argo would automatically replace these variables with the correct "{{ variable }}" "{{ =expression }}"
input.

Let's see how we can repeat the previous example with variables:

Muilti-stepped workflow

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: steps-

spec:
 entrypoint: my-steps

 # This spec contains three templates: my-steps, my-template
 templates:
 - name: my-steps
 steps:
 - - name: step-1 # step-1 is run before the following steps
 template: my-template
 arguments:
 parameters:
 - name: message
 value: "nadav for the win"

 - - name: step-2a # double dash => run after previous step
 template: my-template

Argo's variable substitution

Argo replaces the variables and expression during execution. So when a pod comes up with a variable, you can see in the YAML defenition of
the pod the replaced variable.
That means that your variable values or inputs are written in the YAML file of the pods. Notice that in terms of security.

Also, it limits the length of the variables. The variables are strings that can't pass the few kb size.

https://updf.com

 arguments:
 parameters:
 - name: message
 value: "nadav for the win"

 - name: step-2b # single dash => run in parallel with previous step
 template: my-template # changed my-template-2 to my-template
 arguments:
 parameters:
 - name: message
 value: "epstein didn't kill himself"

 - name: my-template
 inputs:
 parameters:
 - name: message
 container:
 image: <registry>/argo/alpine-python:3.11
command: [echo]
 args: ["{{inputs.parameters.message}}"]

 Explainations:

Lines 15-18: We define the step as before, but now we add .arguments
There are two types of arguments: parameters and artifacts, I would explain artifacts in another time.
Under parameters, we write a list of the parameters we want to pass to the template (like i've said, it's a mini function). We define a parameter
with a syntax.{"name": <name>, "value": "value"}
Lines 29-39: Another parameter, just this time it has a different value.
Lines 36-48: If we want to use variables in our template, we have to define them!
Here we define simillarly as we did in the first bullet. Notice that if we provide here as well, it would be the inputs.parameters, value defualt value
of the variable.
Line 42: This is how we use parameters in the workflow!
In the YAML of the pod, it would look like this: {"command":["echo"],"args":["nadav for the win"]}.

Dynamic Parameters

Dynamic parameters are parameters that are outputs from other pods that we want to forward. Their value is determined during runtime.
We would use them simillarly to the static parameters.

But first, we need to discuss how Argo reads outputs.
Each pod can have two types of outputs - artifacts and parameters. Artifacts are files that are saved and shared through an "Artifact repository" (usally s3-
storage). But we will focus on parameters.

Argo knows to read the stdout of the pods and store that as variables. The stdout of a container is usally its logs, but argo utilizes them to pass parameters
between pods.
So if, for example, your container counts my daily coffee intake in cups, and then prints their results in a json format: , Argo {"result": 99} can read that

."log" and you can load it as a variable

Let's see an example:

Simple stdout params output

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: example-params-
spec:
 entrypoint: steps
 templates:

Saved variables

Some variables are predefined by argo, they can be very helpful. For example:

{{workflow.name}}
{{pod.name}}
{{workflow.creationTimestamp}}

For the full list search "Argo workflows variables" on google.

https://updf.com

 - name: steps
 steps:
 - - name: generate
 template: gen-random-int-python

 - - name: print
 template: print-params
 arguments:
 parameters:
 - name: res
 value: "{{steps.generate.outputs.result}}"

 - name: gen-random-int-python
 script:
 image: "<registry>/argo/alpine-python:3.11"
command: [python]
 source: |
 import random
 i = random.randint(420, 6969)
 print(i)

 - name: print-params
 inputs:
 parameters:
 - name: res

 script:
 image: "<registry>/argo/alpine-python:3.11"
command: [python]
 source: |
 res = {{inputs.parameters.res}}
 print(type(res), res*5)

 Explainations:

Lines 18: Now instead of writing a value, we use a parameter that will be set when the step will finish.generate
This value says to Argo to take whatever had printed to its stdout (oc logs), and save it as the variable res.generate
In this example it's a simple number, but we could also print a JSON file and transfer it.
Lines 22-28: Here we use a . templatescript
This template is simillar to , but instead of running with , Argo creates a file with the string that is written in , container command args script.source
and runs that file.
In this example we used the template to execute python code that prints a random int in a legitimate and common range of numbers. script
Lines 39-40: In this python script we load the parameter.
The parameter is written in the script exactly as it is read from the stdout of the previous pod. Take a look at the following notice:

Volumes and Dynamic Parameters

Let's say you're a good programmer (it's not a compliment, it's an assumption). And let's say that, being the good programmer that you are, your code
prints pretty JSON logs to stdout.
So when you use or look at your pod in OpenShift UI, you want to see your logs. Maybe you even defined that your logs are sent oc logs <pod-name>
directly from stdout to Splunk or Elastic (using annotations in OpenShift,).see here
But wait, you also want to use Argo and transfer parameters between pods in your Workflow! You can't have Argo read a parameter from stdout, it has all
of your logs!
Fear not, youngling, for I shall teach you the ways of Argo.

We want to configure Argo so that it does'nt read your stdout and takes the parameters from there. Instead, it would be best if Argo just read a file with
your output, preferably a JSON file.

Argo's parameter parsing

If line 28's printed then in line 39 it would be written (picture it written in the YAML). And if line 28 printed then line 39 50 res = 50 hello
would be , which will because hello is undefined.res = hello raise a python error
To fix the following example, we need to make sure that , so that line 39 would be line 28 printed " with quotationshello" res =

.which is valid python"hello",

https://updf.com

So, you save all of your output in . Now you need to tell Argo to read the parameter from this file./some/path/output.json
But wait, Argo does'nt have access to your container, it only has access to its sidecar container (deafultly named , it's the image).wait argo-exec
So you need to , so that Argo's sidecar container could access your file in that volume and read its contents.define a volume for your pod output.json

Let's see look at a slightly more complex example:

Volumes and Parameters

apiVersion: argoproj.io/v1alpha1
kind: Workflow

metadata:
 generateName: volume-outputs-example-
 name: volume-outputs-example

spec:
 podMetadata:
 annotations:
 collectord.io/index: my_splunk_index

 entrypoint: workflow-steps
 templates:
######################### steps template #################################
 - name: workflow-steps
 steps:
 - - name: generator
 template: generator
 arguments:
 parameters:
 - name: min
 value: "420"
 - name: max
 value: "6969"

 - - name: print-messege
 template: print-messege
 arguments:
 parameters:
 - name: number1
 value: "{{steps.generator.outputs.parameters.number1}}"
 - name: number2
 value: "{{steps.generator.outputs.parameters.number2}}"

######################### first template #################################
 - name: generator
 inputs:
 parameters:
 - name: min
 - name: max

 outputs:
 parameters:
 - name: number1
 valueFrom:
 path: /mnt/my_volume/number1.txt
 - name: number2
 valueFrom:
 path: /mnt/my_volume/number2.txt

 volumes:
 - name: my-volume
 emptyDir: {}

 script:
 image: "<registry>/argo/alpine-python:3.11"
command: [python]
 imagePullPolicy: Always

https://updf.com

 volumeMounts:
 - name: my-volume
 mountPath: /mnt/my_volume

 source: |
 from random import randrange

 range_min = {{ inputs.parameters.min }}
 range_max = {{ inputs.parameters.max }}
 random_number1 = randrange(range_min, range_max)
 random_number2 = randrange(range_min, range_max)

 with open("/mnt/my_volume/number1.txt", "w") as f:
 print(random_number1, file=f)
 with open("/mnt/my_volume/number2.txt", "w") as f:
 print(random_number2, file=f)

 print(f"Done! nums are {random_number1},{random_number2}")

######################### second template ###############################
 - name: print-messege
 inputs:
 parameters:
 - name: number1
 - name: number2
 container:
 image: "<registry>/argo/alpine-python:3.11"
 command: [sh, -c]
 args: ["echo results are: {{inputs.parameters.number1}}, {{inputs.parameters.number2}}"]

 Explainations:

Lines 8-11: Metadata that will be written in the pods YAML. So this annotation will be added to the pod (the annotation sends logs from stdout to m
y_splunk_index)
Lines 31-34: This is how we pass .defined outputs
It's the same as before with the dynamic parameters, but now we want a specific output and not just (which is stdout of the outputs.result
container).
These outputs are defined in lines 44-51.
Lines 44-51: Here we define the . Notice that once again we can define and , but we choose .template's outputs parameters artifacts parameters
The names are matched to the names of the parameters above. The values are read from the files in the folder./mnt/my_volume/
As before, the parameters will hold exactly what is written as a string in the files .number1.txt, number2.txt
Lines 53-58: This is the . Notice that in you choose the path of the folder that you want to share templates volume defenition mountPath
between the sidecar containers.
Lines 73-76: In this python script, we save the results of our computation in the files .inside the volume, /mnt/my_volume/number<x>.txt

Loops, Conditionals and Parrallel execution

You've learned the basics! You can almost call yourself a Junior Workflower (pls don't call yourself that).
Now it's time to move on to the fun stuff, and utilize the power of Argo-Workflows.

Loops and Conditionals

Templates are like mini-functions, so a Workflow is kind of a programming language.

Let's look at a neat example.
In the following Workflow, a coin is flipped. If it turns out heads - we won! If it turns out tails we lose.
Because we're petty, if the coin turns tails, we'll flip it again until we win (until it turns heads).
Let's see how to run a workflow in which we never lose:

Coin-Flip, loops and conditionals

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 name: coinflip-recursive
 generateName: coinflip-recursive-

https://updf.com

spec:
 entrypoint: steps-coinflip
 templates:
######################### steps template #################################
 - name: steps-coinflip
 steps:
 - - name: flip-coin
 template: flip-coin
 - - name: heads
 template: heads
 when: '{{steps.flip-coin.outputs.result}} == heads'
 - name: tails
 template: steps-coinflip
 when: '{{steps.flip-coin.outputs.result}} == tails'

######################### second template ###############################
 - name: flip-coin
 script:
 name: ''
 image: '<registry>/argo/alpine-python:3.11'
 command:
 - python
 source: |
 import random
 result = "heads" if random.randint(0,1) == 0 else "tails"
 print(result)
 - name: heads
 container:
 name: ''
 image: '<registry>/argo/alpine-python:3.11'
 command:
 - sh
 - '-c'
 args:
 - echo "it was heads"

 Explainations:

Lines 16: This is a This step will run only if this condition evulates to 'true'. For the full syntax of conditionals, search in google..conditional
Lines 18-19: If the conditional in line 17 will evulate to 'true', the template will run.steps-coinflip
But wait! We're inside the template! Argo will run this whole steps template once again - so the next pod that will run would be the steps-coinflip flip

 -coin.
Argo calls this , although I prefer to call it a . That is because it reminds more of a standard programming loop. Recursion loop

After submitting this example, we get:

On the UI:

With the CLI:

https://updf.com

After running " :oc rsh <Argo-server pod name> argo get <workflow name>"

Parallel Executione

Let's say you want to run a simillar template, but for different inputs or different base image.
Take a look at the next example:

Parallelism

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: loops-param-arg-
spec:
 entrypoint: loop-param-arg-example
 arguments:
 parameters:
 - name: os-list # a list of items
 value: |
 [
 { "image": "argo/alpine-python", "tag": "3.11" },
 { "image": "argo/bullseye-python", "tag": "3.11" },
 { "image": "jellyfish/rhel-python-3.6", "tag": "latest" }
]

 templates:
 ######################### steps template ###############################

 - name: loop-param-arg-example
 inputs:
 parameters:
 - name: os-list
 steps:
 - - name: test-linux
 template: cat-os-release
 arguments:
 parameters:
 - name: image
 value: "{{item.image}}"
 - name: tag
 value: "{{item.tag}}"
 withParam: "{{inputs.parameters.os-list}}" # parameter specifies the list to iterate over

 ######################### first template ###############################
 - name: cat-os-release
 inputs:
 parameters:
 - name: image

https://updf.com

 - name: tag
 container:
 image: "<registry>/{{inputs.parameters.image}}:{{inputs.parameters.tag}}"
command: [cat]
 args: [/etc/os-release]

 Explainations:

Lines 7-15: This is the way to enter paramters for the whole Workflow. At any place in the Workflow you can access these variables.
Lines 29-33: The key tells Argo to run this template once for every in the input list (in parallel).withParams item
The input is then called , so in the first run: item item.image=argo/alpine-python.

And the output:

Dynamic Parallel Execution

As of now, you're probably a clever Workflower. Or a determined reader. Or you just jumped to this part because your boss told you to do something and
you have no idea how, so you're searching desperately for an answer to copy so you could do your job and remain ignorant.
Anyway, you need to come up with a way to process your outputs in parallel, and than combine all of the outputs togehter in a single pod.
Fear not, I will show you the way:

Dynamic Fan-in

 apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: dynamic-params-fan-in
spec:
 entrypoint: steps
 templates:
######################### steps template ###############################
 - name: steps
 steps:
 - - name: generate
 template: gen-number-list

 # Iterate over the list of numbers generated by the generate step above
 - - name: double
 template: double
 arguments:
 parameters:
 - name: num
 value: "{{item}}"
 withParam: "{{steps.generate.outputs.result}}"

 # Combine all of the last results (num*2)
 - - name: sum
 template: sum
 arguments:
 parameters:
 - name: doubled-numbers

https://updf.com

 value: "{{steps.double.outputs.parameters}}"

######################### first template ###############################
 # Generate a list of numbers in JSON format
 - name: gen-number-list
 script:
 image: <registry>/argo/alpine-python:3.11
 command: [python]
 source: |
 import json
 import sys
 import random

 num_of_pods = random.randint(3,10)
 json.dump([random.randint(1,10) for i in range(num_of_pods)], sys.stdout)

######################### second template ###############################
 - name: double
 inputs:
 parameters:
 - name: num
 outputs:
 parameters:
 - name: double-num
 valueFrom:
 path: /mnt/my_volume/result.txt

 volumes:
 - name: my-volume
 emptyDir: {}

 container:
 volumeMounts:
 - name: my-volume
 mountPath: /mnt/my_volume

 image: <registry>/argo/alpine-python:3.11
 command: [sh, -c]
 args: ["echo $(({{inputs.parameters.num}}*2)) >> /mnt/my_volume/result.txt"]

######################### third template ###############################
 - name: sum
 inputs:
 parameters:
 - name: doubled-numbers
 script:
 image: <registry>/argo/alpine-python:3.11
 command: [python]
 source: |
 results = {{ inputs.parameters.doubled-numbers }}
 print(results, type(results))
 print(f"The sum is: {sum([int(obj['double-num']) for obj in results])}")

 Explainations:

Lines 20-21: Notice that now the list that the template iterates on is created dynamically.
The amount of pods that will run is determined by the length of the generated list in the python script, at line 42.double
Lines 28-28: The paramater returns all of the parameters of as a list of objects (dictionaries).steps.<step-name>.outputs.parameters <step-name>

Example run:

The whole Workflow looks like this in the UI:

https://updf.com

The isoutput of the first pod (generate) :

[1, 6, 7, 1, 10, 9, 6]

Notice that the sum of this array is 40.
The is () is: output of the last pod sum

[{'double-num': '2'}, {'double-num': '12'}, {'double-num': '14'}, {'double-num': '2'}, {'double-num': '20'}, {'double-num': '18'}, {'double-num': '12'}] <class 'list'>
The sum is: 80

Artifacts

Artifacts are simply whole files that you want to save and load with your In our case it's S3-storage. Use Artifacts if you want to Artifact repository. transfer
 between your Workflow pods.large files

The should be configured beforehand during the installation of Argo. In our case, it means setting our S3 credentials in the Argo Artifact repository values.
.yaml

In this section, I will assume your Artifact repository is already set up, so you can easily save your files to S3.

Output Artifacts

If your code deals with a lot of data, you might want to transfer big files between pods. Parameters are passed in the k8s YAML to a pod, so it restircts
their size in the KB zone.
In order to move around MB's and GB's, you have to save your files to S3 using Artifacts, then load them in the next step.
Let's look at an example:

Artifact outputs

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: artifacts-example-
 name: artifacts-example
spec:
 entrypoint: steps

 templates:
 - name: steps
 steps:
 - - name: gen-artifact
 template: gen-artifact

 - name: gen-artifact
 volumes:
 - name: my-volume
 emptyDir: {}

 outputs:
 artifacts:

https://updf.com

 - name: big-importent-file
 path: /mnt/my_volume/output.txt
 archive:
 none: { }
 s3:
 key: "testing/{{workflow.name}}/big-importent-file.txt"

 script:
 image: "<registry>/argo/alpine-python:3.11"
volumeMounts:
 - name: my-volume
 mountPath: /mnt/my_volume
 command: [python3]
 source: |
 lines = 500000
 sentence = "blah blah\n"
 with open("/mnt/my_volume/output.txt", "w") as f:
 for i in range(lines):
 f.write(sentence)

Explainations:

Lines 18-19: We have to have a volume to use Artifacts.
Lines 23-24: The name of the artifact and the path of the file you want to save on s3.
Lines 25-26: Argo the Artifacts (tar.gz). I add these lines in order to prevent the compression.automatically compresses
Lines 27-28: The path (key) in S3 to save the file. It's under the default folder defined beforehand in Argos . values.yaml
I defined the default folder as , so the full key here is actually: argo-workflows-np argo-workflows-np/testing/{{ }}/big-importent-file.txtworkflow.name

And in S3:

Under argo-workflows-np/testing/*

Under testing/artifacts-example-8642r/*

Input Artifacts

Writing the input is as easy as writing the output, so before I show the full example, let's add a little cool trick:
Let's say you want to create a file on your container in a specefic path. Maybe you want to run a script, but have the script run inside a specific folder
(useful for python\nodejs imports).
In order to do that, we can create a file with Artifacts and run it with of the container:command

Input Artifacts

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: artifacts-example-
 name: artifacts-example
spec:
 entrypoint: steps

 templates:
######################### steps template ###############################

http://workflow.name
https://updf.com

 - name: steps
 steps:
 - - name: gen-artifact
 template: gen-artifact

 - - name: print-artifact
 template: print-artifact
 arguments:
 artifacts:
 - name: results
 from: "{{steps.gen-artifact.outputs.artifacts.big-important-file}}"

######################### first template ###############################
 - name: gen-artifact
 volumes:
 - name: my-volume
 emptyDir: {}

 outputs:
 artifacts:
 - name: big-important-file
 path: /mnt/my_volume/output.txt
 archive:
 none: { }
 s3:
 key: "testing/{{workflow.name}}/big-important-file.txt"

 script:
 image: "<registry>/argo/alpine-python:3.11"
volumeMounts:
 - name: my-volume
 mountPath: /mnt/my_volume
 command: [python3]
 source: |
 lines = 500000
 sentence = "blah blah\n"
 with open("/mnt/my_volume/output.txt", "w") as f:
 for i in range(lines):
 f.write(sentence)
 print("Done")

######################### second template ###############################
 - name: print-artifact
 inputs:
 artifacts:
 - name: results
 path: /home/python_app/results.txt

 - name: start-script
 path: /home/python_app/start_script.py
 raw:
 data: |
 with open("./results.txt", "r") as f:
 print(f.read())
 print("Done")

 container:
 image: "<registry>/argo/alpine-python:3.11"
imagePullPolicy: Always
 command: [python]
 args: ["/home/python_app/start_script.py"]

Explainations:

Lines 19-21: Passing an Artifact. Notice the field instead of .from value
Lines 55-57: Injecting the Artifact that was provided to file ./home/python_app/results.txt
Notice - we could provide the Artifact in another way. We could use write S3 here under path and load an Artifact straight from S3, the syntax is
identical to the output S3 syntax.
In this case we don't need to pass the Artifact in Steps.
Lines 59-65: In this way, we insert the text under into the file We created a python script next to the raw.data /home/python_app/start_script.py. re

 file!sults.txt

https://updf.com

Lines 70-71: Notice that we don't use template here. We use and run the file we created in script container inputs.artifacts[1].

CronWorkflow and WorkflowTemplate

There are different kinds of Workflows. They are very simillar to a regular Workflow, so you don't have much to learn if you already a master Workflower.

CronWorkflow

The easiest one is CronWorkflow - It's a Workflow that runs according to a Cron.

In the YAML, change 's value to .kind CronWorkflow
Basically copy-paste your Workflow into the value (without). Write your Cron in the key, and make sure to spec.workflowSpec metadata spec.schedule
define the .concurrencyPolicy

WorkflowTemplate

Let's say you had written a template and you want to use it in multiple different Workflows.
Instead of copy-pasting it, you can (and should) define it as a WorkflowTemplate and import it to other Workflows!

In the YAML, change 's value to and make sure you have .kind WorkflowTemplate metadata.name
If you want to import a template from this Workflow, just use instead of in templateRef template steps.

Example:

Simple templateRef

apiVersion: argoproj.io/v1alpha1
kind: Workflow

metadata:
 generateName: simple-templateref-
 name: simple-templateref

spec:
 entrypoint: main
 templates:
 - name: main
 steps:
 - - name: call-random-numbers-generator
 templateRef:
 name: random-numbers-generator
 template: generator
 arguments:
 parameters:
 - name: min
 value: "10"
 - name: max
 value: "100"

Explainations:

Lines 14-16: This is how we refrence another template.
This step will use the template named form the named .generator WorkflowTemplate random-numbers-genertor
It will run the template with the provided arguments and parameters.geneator

Final words

That's it, I hope you enjoyed and now you'll be writing !kickass workflows

Feel free to add questions here with comments and I would do my best to answer and add corrections.

Written by:

http://metadata.name
https://updf.com

https://updf.com

	Workflow writing basics

