UPDF

WWW.UPDF.COM

mrrprerrentiNg SSO with Nginx and Keycloak

® Introduction
® Recommended way to study
® Basic terminology
® Architecture Overview
® Components
* Flow
® Local installation
® Keycloak
® Create a Realm and a Client
® Create and configure the IDP
® |mportant Notes
® Nginx
® Result
® OpenShift installation
® Upload to OpenShift using a Template
® Extra Configuration
® Authenticate and Authorize
* myIDP Client Registration
® Configuring Authorization (blocking users)
® Checking its actually working

Introduction

This article's purpose is to guide you through creating a basic security system. | will demonstrate how you can protect your web app and manage the
users that are permitted to access it. A nice feature is that the login procedure is done using the Maplaz (/), so you wouldn't have to deal much with
user management and credentials.

At the end of this article, you should have a secured web app. You could get information on who tried to login to your site, and you could choose who

has access to your app and who doesn't. As mentioned, the login procedure would be with the Maplaz (although you could define Username-
Password interface).

Recommended way to study

Firstly, read the introduction (you are already in the right direction).
| recommend dividing the System Setup into two parts:
® Local Setup — where everything is running on your computer. All of the routes would be localhost, and the setup would use docker-compose.
® OpenShift Setup — all of the components would be uploaded to OpenShift (OS). This is a system that is much more production ready, but is
harder to set up because of OpenShift networking. In addition to the previous Local Setup, you would have to build Service and Route
objects in OS.

This way is recommended because you would understand the system better, and you could handle the issues better (and there will be issues, trust
me).

If you need to strengthen your OpenShift skills, you are invited to read my OpenShift Guide (shameless self-advertising #1).

Basic terminology

® Authentication - The processs of confirming the identity of the user \ website.

® Authorization — The process of granting permissions to a certain user. For example allowing only users in the admin group to enter a site,
while blocking it for other users.

* |DP - Identity Provider, a database that holds user information in a specific network. It can authenticate the user that tries to log
in. myIDP is the IDP of the "my" network, we will use it.

® OAuth 2.0 - A common authentication protocol in which a certain site gets user information from an IDP, without giving the site your sensitive
information.

® OIDC - OpenlID Connect, it's a protocol that expands OAuth 2.0. For our purpose it is the same as OAuth 2.0 (although there is a difference!).

Architecture Overview

Components

There are two main components at the heart of our security system:

Keycloak — An opensource app that provides a security layer. It will manage the login page, OIDC authentication flow with myIDP, authorization,
user-management and so on. Basically everything regarding the configuration of your security layer.

https://updf.com

UPDF

WWW.UPDF.COM
ngnrerepepaarainework that combines maintaining a server and proxy. We will use it as proxy, it will transfer the incoming requests to Keycloak.
If Keycloak approves the user enterence, Nginx will forward you to the requested site.

In addition you would have to connect Keycloak to a PostgreSQL DB, and have an app that you want to protect.

Flo

The flow of the request is sketched in this great diagram that | made (it's beautiful, | know). The parts we would have to set up are the brown parts
and the arrows, assuming you already have an app \ website.

Authorizalion grant
uojeaUBLINY

MYIDP

You can think about the flow this way:

1. The Tiger (user) wants to get the Rabbit (protected app) because it is hungry (needs to work). The Tiger has to ask for permission from the
wise Fox (Nginx), because the Fox is in charge of all the network communication in the forest.

2. The Fox (Nginx) transfers the request to the Lion (Keycloak).

3. The Lion (Keycloak) doesn't recognize the Tiger (user), so he turns to his wife the Lioness (myIDP). The Lioness (myIDP), being much
smarter than her husbend the Lion, recognizes the Tiger (user) and authenticates him using OIDC protocol.

4. The Lion (Keycloak) can now authorize the Tiger (user). He tells the Fox (Nginx) that all is good.

5. The Tiger (user) is now both authenticated and authorized. So the Fox (Nginx) forwards him to the Rabbit (website).

6. Bonus: Everyone is happy (except maybe the Rabbit's kids).

BTW the Keycloak DB is not a part of the flow, it's just that Keycloak can't work without a DB to store configuration and user information.

Local installation

We will use docker compose to upload four components:

® App/website - The app you want to upload and protect. | will use a simple python-flask server (you can just as easily use nodejs express
server).

® Keycloak

® Keycloak DB

® Nginx

In the following subsections | will explain the configuration of the important parts. | would refer to the docker-compose yaml file below and the
GitHub repository (in the local_setup folder).
Note - Client Registration

In order for the IDP to respect your requests and the whole thing to work, you need to register a client to the myIDP (the IDP). It
is described in the Client Registration section.

https://updf.com

UPDF

WWW.UPDF.COM

Docker-Compose YAML

version: "3.7"

net wor ks:
nynet wor k:
name: nynetwor k
attachabl e: true

services:

postgres:
i mage: <regi stry>/rhscl/postgresql - 10-r hel 7@&ha256:
13703497b40861b4c0563020c17b9bb2d68f 6956ed53312577c7ef 09e8f f 9f a7
vol umes:
- keycl oak_data:/var/lib/pgsql/data
envi ronnent :
POSTCGRESQL_DATABASE: keycl oak
POSTGRESQL_USER: keycl oak
POSTGRESQL_PASSWORD: passwor d
ports:
- 5432:5432
net wor ks:
- nynet wor k

keycl oak:
i mge: <registry>/ny-keycl oak/ keycl oak-certs@ha256:
3al13f d0e01587d2790f 4695b5129b20f 1112039742¢ch7¢c96831f 529dad10a202
envi ronment :
DB_VENDOR: POSTGRES
DB_ADDR: postgres
DB_DATABASE: keycl oak
DB_USER: keycl oak
DB_SCHEMA: public
DB_PASSWORD: passwor d
KEYCLOAK_USER: admi n
KEYCLOAK_PASSWORD: passwor d
Uncomment the line belowif you want to specify JDBC paraneters. The paraneter below is just an
exanple, and it shouldn't be used in production w thout know edge. It is highly recomended that you read
the PostgreSQL JDBC driver docunentation in order to use it.
#JDBC_PARAMS: "ssl =true"
ports:
- 3333:8080
depends_on:
- postgres
net wor ks:
- nmynet wor k

ngi nx:
i mage: <registry>/ny-keycl oak/ ngni x_base@ha256:
5f b160a510eeb11b72a2e17de0d6b8da3c05c4d51e6f 60af cal0733b6b655d52
| oggi ng:
driver: "json-file"
options:
max-size: "10nt

ports:
"90: 90"

vol unes:
- C:\ Users\<your_user >\ Deskt op\ SSO\ | ocal _set up\ ngi nx-defaul t. conf:/etc/nginx/conf.d/default.conf:ro

envi ronnent :
KEYCLOAK_URL: '"http://host.docker.internal:3333/auth/real ms/ nyreal m.wel | -known/ openi d- confi guration"’
KEYCLOAK_LOGOUT: ' "http://host.docker.internal:3333/auth/real ns/ myreal ni protocol / openi d- connect/ | ogout ?
redirect _uri=http://local host/"'
LOCATI ON1: / what ever
LOCATI ON2: /
PROXY_URL: http://web: 5000/

https://updf.com

UPDF

WWW.UPDF.COM " ngi nx"'
—CETENT_SECRET: ' " ef bb35c8- 6984- 460a- b55f - 7f 1f 025ach2f "'

net wor ks:
- mynet wor k

web:
i mage: <regi stry>/ nmy- keycl oak/ t est - app@ha256:
54a022bf e2c4bb2599ed6cbf 39f 7¢3f 1f 42292b8df 79f b75d953f f 766f 54e21b
restart: always
net wor ks:
- mynet wor k

Uncomrent the ports section if you want to test your application. But the whole point in this setup is that
the web app is not open to external connections, so the only way to reach it is through Ngi nx and Keycl oak.

ports:
- "5000: 5000"
vol unes:

keycl oak_dat a:

Note - Docker Volume on Windows

In Windows, before creating a volume in docker, you need to configure it in Docker-Desktop. In Dcker-Desktop go to Settings ResourcesFile
Sharing, there add your desired volume directory.

Keycloak

We will use an image of Keycloak that | modified, it is the keycloak-certs repo. The important modification is the installation of the myNET certs, so
that Keycloak can communicate in HTTPS (basically it adds the myNET CA's to Keycloak trusted CA's).

Create a Realm and a Client

After you ran the Keycloak container, open it in the web browser (with the current docker-compose it's in http://localhost:3333/). Click on Admin-
Console and enter your admin credentials. Then you should see the following screen:

Master
General = Login Keys Emall Themes Cache Tokens ClientRegistration Security Defenses
Realm Settings * Name.
Clients
Display name Keycloak
HTML Display name <aiv class="kelogorter» Keycloake/span></divs
s Frontend URL
e EPE - |

Authentication
User-Managed Access OFF

Endpoints OpeniD Endpaint Configuration

0 Identity Provider Metadata

Ever

import

Export

http://localhost:3333/
https://updf.com

UPDF

WWW.UPDF.COM
onormermmemeerrarerupleft corner and choose "Add realm”, give it some name. Then click on "Clients" in the sidebar and choose "create" in order to
create a new client, give it an ID (I like to call it "nginx"). The client defines inner-configuration inside a realm, you should have a unique client for each
application you protect.

In the client configuration page, configure it to look like this:

Nginx
Settings | Roles Client Scopes Mappers Scope Revocation Sessions Offline Access Installation
Client ID ngin
Ciient Scopes
Name
Roles
Identity Providers Description
deration Enabled [on |
- Consent Required OFF
Login Theme v
Client Protocol openid-connect v
Access Type confidentia v
Events standard Flow enevted [[El
Import
Eren Implicit Flow Enabled oFF
pirectaccess Grants [N
Enabled
service Accounts Kl
Enabled
Autherization Enabled [o |
Root URL
* Valig Redirect URIS [repusnocatnost] +
Base URL
Admin URL
Web Origins +

> Fine Grain OpenlD Connect Configuration
> OpenID Connect Compatibility Modes
> Advanced Settings

> Authentication Flow Overrides

There are loads of configuration options for the client, the important ones for us are:

® Access Type - Choose public if you are testing. Otherwise choose confidential and save the Client Secret from the credentials tab (it appears

after you hit save).
® Valid Redirect URI's — In these you specify the valid paths that the client receives. In the local version it should be http://localhost/* and http://

host.docker.internal/*
® Under Authentication Flow Overrides there are the default client Authentication Flow's. We will reconfigure it in the Configuring Authorization s

ection.

Tip - Client Configuration

Under Roles you can create client specific roles. If you make access type confidential and enable Authorization than a new sub-tab opens. It is
the Authorization tab. with it you can control your client authorization much more flexibly (for example block a certain role from a specific route). It
requires extending Keycloak with scripts (to enable a policy-enforcer) and diving into the Keycloak world.

Create and configure the IDP

The identity provider (IDP) is the part of the system that will allow users to log in without entering a username and password, it will get their user info
using OIDC and the Maplaz. Frankly it's the coolest part of this system. The steps to configure

1. In the sidebar choose "ldentity Providers" and create a new one using the dropdown. Choose "OpenlID Connect v1".

2. In the IDP configuration, first you should choose an Alias. Notice — the Alias is not an unimportant name! The unimportant name is the
Display Name, the Alias goes automatically into the Redirect URI (above). That is very important, because we need to configure the OIDC
client to accept our particular Redirect URI.

3. Enter the following address that are needed for the OIDC protocol taken from this json (https://mylDP/auth/realms/prod/.well-known

/openid-configuration). In case you use Mamram and not Marganit, change "mr" to "mm".

Aut hori zati on URL "https://nyl DP/ aut h/ r eal s/ pr od/ pr ot ocol / openi d- connect/ aut h
Token URL "https://nyl DP/ aut h/ r eal s/ pr od/ pr ot ocol / openi d- connect / t oken"
User Info URL "https://nyl DP/ aut h/ real s/ prod/ pr ot ocol / openi d- connect/ useri nf 0"

http://localhost/*
http://host.docker.internal/*
http://host.docker.internal/*
https://updf.com

UPDF

WWW.UPDF.COM
ellalle Authentication" choose "Client secret sent as post".
5. Enter your Client ID and Client Secret

Finally, your IDP should look like this:

Important Notes
® You need to make sure the client-id and the redirect-uri are known to the IDP. Registration to the IDP is described in the Client Registration
section.
® |n order to actually block users, | refer you to the last section in this article called Configuring Authorization.

® After logging in with the IDP it would redirect you to the redirect URI you gave it with HTTPS. For the local installation, | reccommend to just
remove the 's' from 'https' when you get redirected.

Nginx

In the local setup the Nginx image | used is the nginx_base image in the our repo my-keycloak. It is just Nginx version openresty, with Lua modules
that support OIDC. You can find a reference for the Dockerfile in git.

You need to configure the conf file using the env variables. In the local version we are going to add to the main conf file (that is in the The conf file is
in /etc/nginx/conf.d/default.conf, you can find the conf file also in the GiHub repository under local_setup. The file is this one:

https://updf.com

UPDF

WWW.UPDF.COM

s —

Tip - Nginx conf

Actually this is not the main Nginx conf file. This is just added to the main conf, in our openresty version of Nginx, the main conf file is: /usr/local
/openresty/nginx/conf/nginx.conf .

server {
listen 90 default_server
r oot [opt/ ngi nx/ ht m

resol ver 127.0.0.11 valid=1s ipv6=off
access_by_lua '
I ocal opts = {

redirect _uri_path ="/",

accept _none_alg = true,

di scovery = "http://host. docker.internal:3333/auth/real ns/ <myreal n»/.wel | - known/ openi d-confi guration",
client _id = "<client_nanme>",

client_secret = "<secret from keycl oak ngi nx client>",

redirect _uri_schenme = "http",

| ogout _path = "/l ogout™",

redirect _after_logout_uri = "http://host.docker.internal: 3333/ auth/real ns/ <nyreal m>/ prot ocol / openi d-

connect/ | ogout ?redirect _uri=http://1ocal host/",
redirect _after_logout_with_id_token_hint = false,
session_contents = {id_token=true}

-- call introspect for QAuth 2.0 Bearer Access Token validation
local res, err = require("resty.openidc").authenticate(opts)
if err then

ngx. status = 403

ngx. say(err)

ngx. exi t (ngx. HTTP_FORBI DDEN)

end
expires 0
add_header Cache-Control private

location / {

location /web {
proxy_pass http://web: 5000/

error_page 404 /404. htm
location = /40x. html {

}

error_page 500 502 503 504 /50x. htm
location = /50x. htm {
}
}

Notice:

® The discovery url is set to the Keycloak container under a realm <myrealm>.

® Client name should be specified, (I usually use 'nginx’).

® |If your client is defiend as confidential than you should also provide the client secret.

® | used port 90 becasue 80 was taken.

® |n the current setup, because the proxy is defined under location /web, you need to go to http://localhost:90/web in order to be redirected.

Result

If all is configured correctly, when you enter to the Nginx url (mine is http://localhost:90/web), you should be redirected to a Keycloak login page that
looks like this:

https://updf.com

UPDF

WWW.UPDF.COM
I + -
C {Y @ Not secure | hostdockerintemnal % @ incognito
¢ @ _) -]

MYREALM

Username or email

1DP display name

Password

Then you click on the IDP in the right, and it should redirect you. If you don't use https, you need to change https http in the redirected url (as noted in
the important notes). Then, you should be redirectet to your app.

If you want to actually block users, look at the Configuring Authorization section.

OpenShift installation

After dealing with the Local Installation, you should have basic familiarity with the system (honestly i'll be impressed if you read and followed this long-
ass article).

The OpensShift installation shouldn't be much harder if you managed all of the previous stuff, it would mainly require re-configuration, and knowladge
of OS (OpensShift) networking with Services and Routes. If your'e OS is rusty, you can read my OpenShift Guide (shameless self-advertising #2).

Upload to OpenShift using a Template

| am going to use an OpenShift Template file in order to create all of the objects needed to make the system work (4 Deployments, 4 Services and 2
Routes).

Tip - Using OC and Templates

You can upload the template file using the following OC (OpenShift client) command:

oc process -f path/to/template.yaml | oc create -f -

And since the objects created in the Template get their labels from the template, you can delete them all using:

oc delete all -l <label_name>=<label_value>

The Template file | used:

OpensShift Template

ki nd: Tenpl ate
api Version: tenplate.openshift.io/vl
net adat a:

nane: test-keycl oak

These | abel s woul d pass to all objects created in this tenplate!
| abel s:
group: keycl oak

obj ect s:
- kind: Depl oynent
api Version: apps/vl
nmet adat a:
name: ${ KEYCLOAK_NAME}

https://updf.com

UPDF

WWW.UPDF.COM
—aiie T 5{ KEYCLOAK_NAME}

spec:
replicas: 1
sel ector:

mat chLabel s:
name: ${ KEYCLOAK_NANME}

tenpl ate:
nmet adat a:
| abel s:
name: ${ KEYCLOAK_NAME}

spec:
cont ai ners:
- name: ${ KEYCLOAK_NAME}
i mge: ${ KEYCLOAK | MAGE}
ports:
- containerPort: 8080
protocol : TCP

env:
- nane: DB_VENDCR
val ue: POSTGRES

- name: DB_ADDR
val ue: ${DB_SER NAVE}

- nane: DB_DATABASE
val ue: keycl oak

- nane: DB_USER
val ue: ${ DB_USERNAVE}

- nane: DB_SCHEMA
val ue: public

- nane: DB_PASSWORD
val ue: ${DB_PASSWORD}

- nane: KEYCLOAK_USER
val ue: ${ KEYCLOAK_ USERNAME}

- name: KEYCLOAK_PASSWORD
val ue: ${ KEYCLOAK_PASSWORD}

- nane: PROXY_ADDRESS_FORWARDI NG
val ue: 'true'

ki nd: Service
api Version: vl
nmet adat a:
nane: ${KEYCLOAK_SER NAME}

spec:
ports:

- port: 8080
targerPort: 8080
protocol : TCP

sel ector:

nane: ${ KEYCLOAK_NAME}

ki nd: Route
api Version: route.openshift.io/vl
nmet adat a:

name: ${ KEYCLOAK_SER NAME}-route

spec:
host: ${ KEYCLOAK URL}

https://updf.com

UPDF

WWW.UPDF.COM

—TTuTSer vi ce
name: ${KEYCLOAK_SER NANE}

tls:
term nation: edge

- kind: Depl oynent
api Versi on: apps/vl
nmet adat a:

nane: ${DB_NAME}

| abel s:
nane: ${DB_NAME}
spec:
replicas: 1
sel ector:

mat chLabel s:
name: ${ DB_NAME}

tenpl ate:
nmet adat a:
| abel s:

nane: ${DB_NAME}

spec:
cont ai ners:
- nane: ${DB_NAVE}
i mge: ${DB_| VACGE}

env:
- nanme: POSTGRESQL_DATABASE
val ue: keycl oak
- name: POSTGRESQL_USER
val ue: ${DB_USERNAVME}
- name: POSTGRESQL_PASSWORD
val ue: ${DB_PASSWORD}
ports:

- containerPort: 5432
protocol : TCP

vol umeMount s:
- nane: "keycl oak-data"
nount Pat h: /var/lib/pgsql/data

vol unes:
- nane: "keycl oak-data"
presi st ent Vol umed ai m
cl ai mMName: "keycl oak-dat a"

- kind: Service
api Version: vl
net adat a:
nanme: ${DB_SER NAME}

spec:
ports:

- port: 5432
targerPort: 5432
protocol : TCP

sel ector:

name: ${ DB_NAME}

There is a need to check whats going on with the volume and the persistent volunme claim(at

prod)!

| east

in

https://updf.com

UPDF

WWW.UPDF.COM
RO Cepi oy nent
api Version: apps/vl
net adat a:
name: ${ NG NX_NAME}

| abel s:
name: ${ NG NX_NAVE}

spec:
replicas: 1
sel ector:

mat chLabel s:
nane: ${ NG NX_NAME}

tenpl ate:
nmet adat a:
| abel s:
name: ${ NG NX_NAVE}

spec:
cont ai ners:
- nane: ${ NG NX_NAME}
i mage: ${ NG NX_I MAGE}

env:
NOTI CE: The current dockerfile overrides the systemenv vars. Stuff |ike $host wont work.

- nane: KEYCLOAK_URL
val ue: ""https://${KEYCLOAK_URL}/ aut h/real ns/ nyreal nf . wel | - known/ openi d- confi gurati on"'

- nane: KEYCLOAK_LOGOUT
value: ""https://${KEYCLOAK_URL}/ aut h/real ns/ nyreal nf prot ocol / openi d- connect/ | ogout ?

redirect _uri=http://Iocal host/"'

- nane: PROXY_URL
val ue: http://${APP_SER NAVE}

- nane: LOCATI ON1
val ue: /web

- nane: LOCATI ON\2
val ue: /

- nane: CLIENT_ID
val ue: ' "nginx"'

- nane: CLI ENT_SECRET
val ue: '"49165460- e763-4ad5- alf 3- 184504f 7dbe3"’

- nane: DNS
val ue: resolver 172.30.0.10 ipv6=off;

ports:
- containerPort: 80
protocol : TCP

- kind: Service
api Version: vl
net adat a:
name: ${ NG NX_SER_NANE}

spec:
ports:

- port: 80
targetPort: 8080
protocol : TCP

sel ector:

name: ${ NG NX_NAVE}

https://updf.com

UPDF

WWW.UPDF.COM

S PTVETSTONT rout e. openshift.io/vl
nmet adat a:
nane: ${NG NX_SER_NAME}-rout e

spec:
host: ${APP_URL}
to:
ki nd: Service
name: ${ NG NX_SER_NAVE}
tls:
term nation: edge

- kind: Depl oynment
api Version: apps/vl
net adat a:

nanme: ${ APP_NAME}

| abel s:
name: ${ APP_NAME}

spec:
replicas: 1
sel ector:

mat chLabel s:
name: ${ APP_NAME}

tenpl ate:
net adat a:
| abel s:
name: ${ APP_NAME}

spec:
cont ai ners:
- nane: ${APP_NAVE}
i mage: ${APP_| MAGE}
ports:
- containerPort: 5000
protocol : TCP

- kind: Service
api Version: vl
nmet adat a:
name: ${ APP_SER_NAME}

spec:
ports:

- port: 80
targetPort: 5000
protocol : TCP

sel ector:

nane: ${ APP_NAME}

par aneters:
- nanme: DB_NAME
val ue: keycl oak-db

- nanme: KEYCLOAK_NAME
val ue: keycl oak

- name: NG NX_NAME
val ue: keycl oak- ngni x

- name: APP_NAME
val ue: keycl oak-testapp

- name: KEYCLOAK | MAGE
val ue: <registry>/ny-keycl oak/ keycl oak-certs@ha256:

https://updf.com

UPDF

WWW. 3D EnE M 6db4588a5247f 3f 1e948cdf 2315ae0672a433ac8c3bc889f

- nane: DB_| MAGE
val ue: <regi stry>/rhscl/postgresql - 10-r hel 7@&ha256:
13703497b40861b4c0563020c17b9bb2d68f 6956ed53312577c7ef 09e8f f 9f a7

- name: NG NX_I MAGE
val ue: <registry>/nmy-keycl oak/ confi gured_ngni x@ha256:
24a4a8bb3f 139009620c80c4482662aedad85408f 1c4bc0c36f ddbe83cd65e9c

- nane: APP_I MAGE
val ue: <regi stry>/ nmy-keycl oak/t est - app@ha256:
54a022bf e2c4bb2599ed6¢cbf 39f 7¢3f 1f 42292b8df 79f b75d953f f 766f 54e21b

- nanme: DB_SER NAME
val ue: keycl oak-db-service

- name: KEYCLOAK _SER_NAME
val ue: keycl oak-service

- name: NG NX_SER_NAME
val ue: keycl oak-ngi nx-service

- name: APP_SER NAME
val ue: keycl oak- app-service

- nane: DB_USERNAME
val ue: admn

- nane: KEYCLOAK_USERNAME
val ue: nadavDaKi ng

- name: DB_PASSWORD
val ue: admin

- nane: KEYCLOAK_ PASSWORD
val ue: 1to6

- name: APP_URL
val ue: keycl oak-test-app. ocp4. myNET

- name: KEYCLOAK_ URL
val ue: keycl oak-adm n. ocp4. myNET

DONT PANIC from the Template's size, it's just the configuration for 4 Deployments, 4 matching Services and 2 Routes. If you'll break it to its parts
you'll find they're quite simple.

Notice:

® Nginx conf file is now built from environment variables, and it is the real conf file and not the fake one (as mentioned in the Local Setup Nginx
section).

® Nginx discovery is the Route of Keycloak, instead of the Keycloak Service (I couldn't manage to make it work with the service, it had resolver-
dns issues. If you manage to make it work pls tell me).

® Nginx proxy is the service of the Protected App.

® Keycloak's database address is changed to the database service.

® The ports had changed because all of the Services and Routes. Now you just enter the routes at regular port 80.

If all worked well, you should be able to get the Admin Console from the keycloak-service-route. And when you go to the keycloak-nginx-service-route
URL you should see the following error:

c 0 & keycloak-test-app.apps.ocp4.np.mr.idf.cts,

L e @@ = n | 5] -

could not decode JSON from Discovery data: response indicates failure, status=484, body={"error”:"Realm does not exist™}

Which means that you have not created a Keycloak realm yet.
If you got so far, honestly, either you are crazy or your commander is crazy. Either way you deserve a prize.

Extra Configuration

https://updf.com

UPDF

WWW.UPDF.COM
weemmevesreereserivgdre some of the realm, client, IDP and IDP-client settings.
Open up Keycloak admin-console (using the previously defined route) and enter the admin credentials ("nadavDakKing", "1t06"). Create a realm and
and a client similarly to the Local Setup configuration. Now, in the Valid redirect URI's, enter http:/keycloak* and https://keycloak .
For the IDP configuration, again follow the steps in the Local Setup IDP configuration. Make sure to copy the new Redirect URI and to put it in the
valid IDP-Client URI list, as explained in the myIDP Client Registration.
If all is done correctly, you should be able to enter the Nginx route, get a Keycloak login prompt, login with the IDP and then be redirected to your
Protected App!

Now - if you haven't done it already - the last step is to actually block the users using authentication flows. It is explained in the Configuring
Authorization section.

Authenticate and Authorize

myIDP Client Reqistration

As mentioned, Keycloak communicates with the myIDP (our IDP) using OIDC protocol. The protocol requires that you define a client, and send a
valid redirect URI (so that the IDP would know where to redirect you after it authenticates you).
So in order for the whole thing to work, you need to register a client at your IDP. Fortunately for us, the great team of myIDP made it easy for us

(tnx guys!).
Enter their portal at https://portal. myNET/ and create a new client. You should be redirected to the new client page:

TEXT

https://updf.com

UPDF

WWW.UPDF.COM

i T Lo €]

® Client ID - Choose a hame to your likings, you'd enter it at the IDP configuration.

® Client Secret - Choose a secret (a password), you'd enter it at the IDP configuration. BTW this is a great place for easter eggs, | reccommend
using base64.

® Redirect URI's - This is the place to enter the redirect URI's you saw at the Keycloak IDP configuration page. Notice that you can insert
multiple addresses. Also notice that the Local Setup and the OpenShift Setup require different redirect URI's. My configuration looks like this:

Click submit and your'e done!

Configuring Authaorization (blocking users)

After reading this enormous article, trying to set up the system, failing, crying, looking up for other occupations, and finally somehow making this work
—you might wonder how to actually block users from entering your site (or is it just me?). This is the authorization process, and Keycloak has a lot of
ways to accomplish that. I will show a simple way | figured it out, but if you'd like to implement a more complex authorization, | recommend reading
about Keycloak's roles, polices, scopes, groups and policy enforcers.

The way we are going to implement authorization is using Keycloak Authentication Flows. These are the processes every user is going through when
he logs in (without him\her knowing). We are going to assign every new user that logs in an Enemy role, so that he can't get into the site. Than, the
Admin (King) can view the user and decide if he is really an Enemy of the realm or not. If the Admin (King) decides to let the new traveler pass, he
simply needs to unassign the user from the Enemy role.

First, let's create a Role: on Keycloak admin-console, click on Roles in the left sidebar. Then Add Role, name him something, I'm going with Enemy.
Then go to the Default Roles tab and make sure he is the only Realm Defauly Roles:

AKEYCLO

Myrealm Roles

RealmRoles Default Roles

Realm Roles Available Roles Realm Default Roles

Enemy

Client Scopes

= Roles
Identity Providers
Uses deration Client Roles.

Authentication

Sessions
Events
Import

Export

Follow these steps to configure the Authentication Flows that we will use for authorization:

1. Select the Authentication tab from the left sidebar. You should see a browser Authentication Flow schema. That means that every regular
browser log in attempt would go through these processes.

2. Click on Copy, in order to create a copy of this Flow and name him whatever you'd like (I chose Browser w Roles).

3. Click on Add flow in order to add a new Authentication Sub-Flow and give it some name. On the new subflow that you created, make sure con
ditional is clicked.

4. Click on the Actions dropdown of the new sub-flow, choose Add execution. Then choose Condition - User Role from the drop down.

https://updf.com

UPDF

W W O R (B < & (9 & JIRED in the new condition, then go to Actions and hit config.
=gm—rgervereacied the configuration of the execution. This basically means that any role that you would write in the User role tab would be denie
d from logging in. So write down Enemy, or the lame role name you chose earlier. Hit save.
7. Repeat steps 2-6 for the First Broker Login Flow. Also create a new Flow (using new) and apply steps 3-6 to it.

At the end of this process, you should have created 3 new Flows, two copies and one new. They should look like these:

@AKEYCLC Fyr—
Myrealm Authentication
Flows Bindings RequiredActions PasswordPolicy ~ OTPPolicy WebAuthn Policy WebAuthn Passwordless Policy
Realm Setings Browser W Roles v New || copy || Detete | Add execution || Add flow
Clients Auth Type Requirement

REQUIRED | ALTERNATIVE DISABLED

REQUIRED | ALTERNATIVE DISABLED ©

REQUIRED | ALTERNATIVE DISABLED

Authentication

REQUIRED = ALTERNATIVE ~DISABLED ~CONDITIONAL |
REQUIRED

REQUIRED = ALTERNATIVE DISABLED ~CONDITIONAL |

User . DISABLED

Bz REQUIRED

Import

REQUIRED | ALTERNATIVE DISABLED
Export

REQUIRED | ALTERNATIVE DISABLED = CONDITIONAL

> Condition - User Role. (Enemy o DISABLED
denied) REQUIRED =

cexz By Role v | Copy | Detce [e
Auh Type Requirement
Rolesd REQUIRED ALTERNATNE DISABLED © CoNDITIONAL

Conditon- st R (Ensmy deniee) © REQUIRED. DisaBLED

AKEYCLC

Myresim

PPoicy WebAuthn Poiicy

REQUIRED | ALTERNATIV

DISABLED | CONDITIONAL

REQUIRED | ALTERNATIVE | DIStBLED

REQUIRED | ALTERNATIVE | DISABLED | CONDITIONAL

REQUIRED | ALTERNATIVE | DISABLED

REQUIRED | ALTERNATIVE | DISABLED | CONDITIONAL

RequiReD

REQUIRED | ALTERNATIVE | DISABLED | CONDITIONAL
RequiReD

REQUIRED | ALTERNATIVE | DISABLED | CONDITIONAL

. DISABLED
REQUIRED

REQUIRED | ALTERNATIVE | DISABLED
REQUIRED | ALTERNATIVE | DISABLED | CONDITIONAL

® DISABLED
RequiReD

Finally, we'd have to tell the client and the IDP to use our modified Flows instead of the default ones:

® Go to the IDP configuration, in the First Login Flow tab choose the modified first broker flow that you created (first broker flow w roles). In the
Post Login Flow choose the new Flow you created (Access by Role).

® |n the client configuration page, under Authentication Flow Overrides, choose the modified Browser flow that you created (Browser w Roles).
NOTICE! Currently the Browser Flow doesn't work, so don't change it. You can go on without it and nothing would change (the browser flow
modifications are only there in order to deny username-password login). When | will remember how to make this work i'll add it.

https://updf.com

UPDF

WWW.UPDF.COM

ctually working

We are finally done. Go to the nginx-route and get to the Keycloak login page. Click on the IDP provider and wait, you should be redirected to an
"invalid login attempt". That means that Keycloak recognized you as an Enemy and denied your access.

Now enter as admin, and go to the Users tab from the sidebar. Click on View all users and you should see your user. Click on it and go to Role
Mapping, change the user Assigned Roles and remove Enemy from there. It should look like this:

@®AKEYCLO 2 Nadavaaking ~
Users > 58628617
Myrealm
S
Details Attributes Credentials Role Mappings Groups Consents Sessions Identity Provider Links
Realm Settings =

Clients

Realm Roles Available Roles Assigned Roles Effective Roles

Client Scopes

Roles

Identity Providers

User Federation Add selecte

Authentication Client Roles

Events
import

Export

Then try to go to nginx-route again. If you can't get the login page, you should probably delete your cookies and cache (if it still doesn't work, go to Real
m Settings Tokens and change the access token lifespan and other stuff to 1 minute).
Try to log in with the IDP provider.

It should work. Probably (:

By:

LAYERIRIONA

https://updf.com

	Implementing SSO with Nginx and Keycloak

